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Abstract. A geometricalstress energy tensorfor semi-Riemannianmanifolds is
describedand a Mach’s principle is formulated.It is shown that vacuumoccurs
if andonlyif themanifoldis a totallygeodesicsubmanifoldofaflat semi-Euchdean
space. Furthermore the Einstein equationsare attained with the cosmological
constantappearingas the mean curvatureof an isometric immersion.A minimal
submanifold of a semi-Euclideanspace can therebybe regardedas a solution
to Einsteinsequationswithout a cosmologicalconstant.Intrinsic conditions that
will allow a 4-dimensionalsemi-Riemannianmanifold to be immersedisometri-
cally into 5-dimensionalsemi-Euclideanspaceasa minimalhypersurfacearefound.
From this result it is possibleto find explicitminimalhypersurfacesofRobertson-
Walker typein a 5-dimensionalMinkowski spaceand it is observedthat theyall
containan initial singularity.

1. INTRODUCTION

In Einstein initial formulation of the generaltheoiy of relativity, he stated
threefundamentalprincipleson which any theoryof gravity shouldrest.

I) The principle of generalcovariance.
2) Theprinciple of equivalence.
3) Mach’sprinciple.
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The two first principles haveclear physical ramificationsand are well under-

stood in the languageof differential geometry.Nowadaysthey are usuallyinter-
pretedin the following way:

The theory shouldbe formulatedinvariantly on a spacetime,which is a four-

dimensionaldifferentiablemanifold (principle 1 .). The curvatureof this space-
time, derived from a metric tensor field, is interpretedas the action of gravity

(principle 2.). The metric tensor field can then be thought of as a potential
for the gravitationalinteraction.

The third principle, Mach’s principle, has however an apparentlyvery vague
status,and is still a subject to discussionamongscientistsin relativity. The ori-

ginal idea of Mach was to abolishNewton’s conceptof an absolutespace,as
required in the law of inertia. An inertial systemshould no longerbe defined
relative to an absolutespacebut relativeto the fixed starsof theexternalgalaxies.

This is not only more satisfying from a philosophicalpoint of view, but also
in agreementwith observationsin astronomy.Mach took this agreementas an

indication of an intimite connectionbetweenthe very distantmatterin the uni-
verse and the concept of inertia. Remove the fixed stars and the concept of

inertial masshas no meaning.Inertial massshould thereforenot be thought of
asan intrinsicproperty,but asdependingon a backgroundmatter.

Machneverproposedanyexplicit quantitativeschemefor hisnew interpretation
of the law of inertia. He in fact never formulatedit as a principle. This was

first doneby Einstein in 1918, [5] in an attemptto formulatea consistenttheory
of relativity with the abovementionedprincipleson equalfooting. Einsteingives

the idea of Mach a concreteform by requiring that the matter distribution of
the universeshouldcompletely determinethe geometryof spacetime(see also

[6]). The distribution of energy andmatteris related to the geometryof space-
time via the so-calledEinsteinequations,and it was the initial hope of Einstein

that this determinacyin fact alreadywas incorporatedin theseequations.This
turned out to be false. Essentially different metric solutions to the Einstein

equations were found, that describe the same matter distribution. Einstein’s
initial enthusiasmsfor Mach’s principle thereforewaned in his later years and

linally vanished.In 1954 he writes to a colleague,<~asa matterof fact, one shoud
no longerspeakon Mach’sprinciple at all>>. [7].

The questionwhich is raised by the Mach’s principle concernsthe origin of

the initial massand has as such deep connectionwith one of todaysbasic un-
solvedproblemsin theoreticalphysics— the quarkmasses.Thereexistsno theory,
at present,which can give any indications of the quark masses.A final under-
standingand formulation of Mach’sprinciple shouldtherefore alsoinvolve quan-
tumfield theory.

In this paper I shall give a new geometrical formulation of the Mach’s
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principle, that leads to considerclassicalinterestinggeometricalquestionsrather

than solving fundamentalphysical problems.The main objects are immersions

of semi-Riemannianmanifolds. In particular the case of four dimensional
Lorentzianmanifold immersedin a flat five dimensionalpseudo-Euclideanspace.

A cosmological solution to Einstein’s equationsof Robertson-Walkertype is

derivedas aminimal hypersurface.

2. EINSTEIN’SEQUATIONSAND MINIMAL IMMERSIONS

In the spirit of Einstein I shall in the following defmea geometricalMach’s

principlefor semi-Riemannianmanifolds.
Let (M, g) denotea semi-Riemannianmanifold of dimension m with metric

tensorfield g. We considerthe geometryof (M, g) in the frame of classicalfield
theory.

The differentiable manifold M has a naturalgeometrical field, given by a
map,‘~‘, that to eachpointp EM assignsthe tangentspaceT~Matp,i.e.

~ :pI-+ T~M.

Connectedwith this map we define a Lagrangefunction L(’y) on the field
andan actionintegral:

1 L(y)d vol.

The equationof motion or the field equationsare derived from an action

principle, i.e. we assumethat the field chosenby nature is a field extremizing
this action integral. Thus stationary action undervariation of the map ~ leads
to theEuler-Lagrangeequationsi.e. equationsof motionsfor thefield.

To obtain a set of field equationsfor the metric tensorfield g by this action

principle, we needto couple the field to the metric tensorfield g by defming
the Lagrangefunctionin the following way.

Consider (M, g) isometrically immersed into a flat semi-EucideanspaceE’
7

by animmersion:

M -+ E”,

where the tangentspaceT~Mis identified with the subspaceT~~() 0(M) of E’7.

Also sincethediscussionsherearelocal, 0(M) will be identifiedwith M.

The field ~ now appearsnaturally by assigningto eachpoint p the tangent
spaceT~Mat 0(p) translatedto the origin ofE’~.Hencewehavea map:
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M -~ Gmn

into the GrassmannianGm ,n of ni-dimensionaloriented subspacesof E’
1. Classi-

cally this map is called theGaussmap,associatedto the immersion ~.

On Gmn we have a canonicalmetric k induced from the metric on E’~.A

simple geometrical Lagrange function involving this metric and the metric g

is the following:

1 1 1
(1) e(’y)= — = — (d’y,d-y)= — trace7*k,

where (. , .) denotesthe induced metric from g on the tensor bundle over M.

The action is thengivenby:

(2) 1 = e~y)d vol.

This action also appearsin a numberof different fields theory, e.g. in a gene-

ralization of Heisenhergsclassical theory of ferromagnetism, in the nonlinear

c-model in particle physics(for referencessee Ill]), and recently also in Polya-

kov’s string theory [15]. In mathematicsthe action appearsin the theory of

harmonic maps and its stationary values are called harmonic maps [4]. The

correspondingEuler-Lagrangeequationsare

(3) —A~+r~a
1y~a~y~’=o.

where A is the Laplace-Beltrami operator on 114 and are the Christoffel

symbols of the Levi-Civita connection on Gmn~in order to obtain the field

equationsin the metric field g, however, we considervariationsin gin this action.

Hereby we obtain the so-calledcanonicalstressenergy tensorT, defined by the

classicalvariationalexpression:

= f T’
1~g~

1d vol.

In connectionwith harmonic mapsthe 2-tensor T = T” hasbeenstudied in

[1]. They found the following expressionfor the stressenergytensor:

(4) T =e(~y)g_~y*k.

In a variational formulation one adds to the initial action a matter contri-

bution, and then demandthe total action stationaryundervariation in themetric

g. Hencewe considerequation(4) as a definition of thestressenergymomentum
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causedby geometry.

Since it is always possible isometrically to immersea semi-Riemannianmani-

fold into semi-Euclideanspaceby a theorem of Clarke [3], (a generalization

of the result [10]), we are always given a stressenergy tensoron a semi-Rie-

mannianmanifold by theaboveprocedure.Thetensoris not unique,but depends

on the chosenimmersion.However, if we assumethe dimensionof M to be 4

and the codimensionof the immersion less or equal to 3 it will be uniqueup

to a rigid motion by a theoremof Berger,Bryant andGriffiths [2].

We cannow formulatea geometricalMach’sprinciple by thefollowing question.

Mach‘.s principle: Let g andg’ be two semi-Riemannianmetricson M and ~,

~‘ be their correspondingGaussmaps. If T
7 = T,~,are they then isometric?

In the specialcase of T = T, = 0 we have an affirmative answerby the

following theorem.

THEOREM1. Let (M, g) be a semi-Riemannianmanifold of dimensionm > 2

and let ‘y be the Gaussmap associatedto a non-degenerateisometric immersion

0 :M-~E’~.

Then T = 0 if and only if (M, g) is a totally geodesicsubmanifoldof En.

Proof AssumeT1, = 0 thenby the definition:

e(’y)g =

and taking trace of both sides of this equationyields me(7) = e(7) andby hy-

pothesiswe have

e(7) = — (dy, d7) = 0.

In the Riemanniancasewe havedy = 0, i.e. y is a constantmap.In the semi-
Riemannian case the assumption of a non-degenerateimmersion is needed.

Considerthesecondfundamentalform definedby:

= yE — V

where V~is the flat connectionon E’
2 and V the Levi-Civita connectionon M

respectively.The secondfundamentalform is a symmetric 2-tensorwith values
in the normal bundle TM1. We say that the immersionis non-degenerateif and

only if:

(j3~,$~)= 0 .— = 0.

The differential dy : TM -÷ TGmn is a map with valuesin the tangentbundle
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of the Grassmannian.Identifying this bundle with the tensordecomposition:

K* ® K’, we have the basic relation dy = f3~.Here K denotesthe tautological

bundle over the Grassmannian,~e. the bundlewherewe overeachrn-planeassign

the plane itself. Hence we seedy = ~ = 0, so (M, g) is a totally geodesicsub-

manifoldof E~.

If we on the other hand assume13~ = 0 this implies d’y = 0 henceby (2)

T=0.

An explicit expressionfor the stressenergy tensor is given by the following

result.

THEOREM 2. Let y : M —~ Gmn be the Gaussmapassociatedto a minimal iso-

metric immersion 4 : M -+ E~.Then the field equationsfor the metric field

aregivenby:

(5) T =Ric— —Sg,

whereRic is the Riccicurvatureand Sis thescalar curvatureon (M, g).

Proof: This is an application of the Gaussequations.Let R denotethe Rieman-

nian curvaturetensor,then:

(6) (R(X, Y)Z, W) = (j3(X, W), j3(Y, Z))—(
13(X, Z), f3(Y, 14’)),

relating the curvature of the manifold (Al, g) to the second fundamentalform

of the immersion.Here X, Y, Z, JV are vectorfieldson M. The mean curvature

vector h is definedby

(7) Ii = trace13.

The immersion is called minimal if the mean curvaturevector vanish every-

where. A direct computation using the Gauss equationsyields a result of

Obata [13].

(8) y*k =(13,h)—Ric.

By taking trace we arrive at the following expressionfor the Lagrangefunc-

tion:

e(y) =— — (S—(h. Il)).

This is in fact identical with the usual Lagrangefunctional in generalrelativity
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(see [8]) if we interpret (h, h) as a cosmologicalconstant.Using formula (3)

withh=Owefind(5). U

REMARKS. Under the hypothesisthat the immersion is minimal we have the

following consequences:
i) The stressenergy tensor has no explicit dependencyon the immersion.

It is givenuniquelyby the intrinsicgeometryof (M, g).

ii) The field equationsreducesto the classicalEinstein equationswithout

cosmologicalconstant(equation5).
iii) The GaussMap y is an extremumof the action integral (2) by a theorem

of Ruh andVilms [16].
iv) The usual approachto the problem of general relativity can be viewed~

as a generalizationof the classical Plateauproblem for minimal surfacesin the

following way:
Given a symmetric 2-tensorT on a semi-Riemannianmanifold (M, g), does

thereexist an isometric minimal immersion0 : M -+ E’
5 with T asits stressenergy

tensor?

3. MINIMAL HYPERSURFACES

The general problem stated in remark iv) is unfortunatelyvery difficult to
tackle;butsincea numberof exactsolutionsto theEinsteinequationsarealready
known, one could instead consider the following more feasible problem: Can
any of the known exactsolutions to Einsteinsequationsbe realizedasa minimal
submanifoldof a flat semi-Euchideanspace?

Due to the result of Theorem 1. however,one can immediately exclude all

vacuumsolutions, such as Schwartzchild,Kerr- and planewavessolutions,since
T = 0 implies flat geometry. One could thereforesay that the level of validity

of the Einstein equations,in this picture, is on the macroscopiclevel, i.e. only
cosmologicalsolutionshasto be considered.

To simplify matters further we will restrict ourselvesto the case of hyper-

surfaces,i.e. immersionsinto E5, and pose the question:given a 4-dimensional
Lorentzian manifold (M, g) what is the necessaryand sufficient condition for
(M, g) to be immersedas a minimal hypersurfaceof E5? We have the following

local answerto this problem:

THEOREM 3. Let (M, g) be a 4-dimensionalsemi-Riemannianmanifold and

assumethat the Ricci curvatureRic, viewedas selfadjoint transformation, has

only real non-positiveeigenvaluesand is of constantrankr in an opensetU CM.

Then a neighbourhoodU’ ofa point p in U can beminimally and isometrically
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immersedinto E
5 if there exists an orthonormal frame (e

1) diagonalizing the

Ricci transformation in U and such that the sectional curvaturesK(e. A e.) in

that framesatisfy oneof following conditions:

i) If r = 4 : (settingK11 = K(e~A e1))

K~ = K13, K24 = KM, K23 = — — (K12 + KM),

KK
K-—~14 Kl2+KM

ii) Ifr=3:

K24KM
K12 = A13 = K14 = 0 and K = — ________

K24 + KM

iii) Ifr = 2:

K.. = 0, exceptone, e.g. KM ~

iv) Ifr= 1 or r=0

allK.. =0.
II

Furthermore, if U = 714 and M is a connectedanc4 simply connectedmani-

fold, then theimmersioncanbe extendedto a global immersion.

Proof We have to prove that there existsa tensor field A of type (1,1) on M

satisfying the equationsof GaussandCodazzi.Then by thefundamentaltheorem

for hypersurfaces,(see [9] and the proof therein), there exists an isometric

immersion of a neighbourhoodU’ of p with A as the secondfundamentalform.

Then we only need to show that the conditions also imply that TraceA = 0,

i.e. theimmersionis minimal.
We shall use the formalism of bivectors. Let A

2 TM bethevectorspace of

bivectorsspannedby {e
1 A e1}, an orthonormalbasisin the inducedinner product

on A
2T~Mdefinedby

(10) (u~A ~ ‘U

2 A v2) = det [(u1. v.)]. for u., V. C TM.

A linear mapA : T~M-+ T~Mdefinesa linear mapA A A on A
2T~Mby the

relationA A A(x A i’) = Ax A Ày.

The curvature tensorcan then be thought of as a self adjoint linear mapR

A2T M-*A2T Al via the relation
p p

(R(x A:). u ~ v) = (R(x, i) U, a)



MINIMAL IMMERSIONS, EINSTEIN’S EQUATIONS AND MACH’S PRINCIPLE 9

wheretheR on the right hand side denotesthe usual curvatureoperatoron TM.

Let A denote the second fundamentalform,viewed as a self adjoint linear
transformationon the tangentspaceT~M~then the GaussandCodazzi’sequations
taketheform:

(11) R=AAA

(12) V A is symmetric.

Let us first investigatethe Gaussequations,(11).
TheRicci transformationis definedby the trace:

(13) (RicX, Y)=trace{Z—’-R(Z,X) Y}

or in a orthonormalframe:

(Rice
1, e.) ZZ~~I�k(R(ek,e.)e.,ek)

=~II�~ (R(ek A e1), ek A e1>,

wheree is the signatureof themetricg.
Now, if we apply the Gaussequationswe get:

(Ric~ e.) ~I~k (A A A(ek A e.), ek A C.)

=~ e~(A ~ A A e., ek A e.)

=~ Ck (A ek~ek)(A e., e.)~ek (A ek. e.XAeI,ek)

= (A e1, e1) traceA — (A
2e

1, e.).

So

(14) RicX=AXtraceA—A
2X.

Since the immersionis minimal if and only if traceA = 0, the secondfun-

damentalform hasto satisfy:

(15) A2 =— Ric.
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The orthonormal frame (e
1) diagonahizesthe Ricci transformation.In that

frame we constructA as a diagonal matrix with eigenvalues~, X2~X3, X4,

satisfying:
X~

Now the sectionalcurvaturesare definedby:

(R(x A y), x A y)
K(xAy)=

(x A y, x A y>

and setting K(e1 A e1) = K11 the Gaussequationstakethe form K11 = X~X1.The

Ricci tensoris also given in termsof thesectionalcurvatures:

R.. = (Ric e., e.) = e. ~ K11.

i #1

Furthermore,the invariant det A = X~X2 X3 X4 is also by theGaussequation

equal to K12KM = K13K24 = K23K14. Hence, the eigenvaluesof the second
fundamentalform hasto satisfythe following 3 conditions:

(17) K.. =X.X.
II I /

(18) —X~=K12 +K13 +K14

— = K~2+ K23 + K24

— = K1~+ K23 + KM

— = K~ + K24 + KM

(19) K12KM = K13K24 = K14K23

By comparingK1~= and K1~= one finds either K24 = K34 or
K12 + K13 + K14 = — = 0.

Let us first assumeRic is of rank4, then K24 = KM � 0.

From condition (19) it then follows K12 = K13, henceby (17) A2 = A3.

Then

K23 = x2 A3 = A~ = — K12 — K23 — K24

K23 = — — ~‘~12 + KM)

andby(l9)
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K
12K34

K12 ,-

Now considerthe caseRic is of rank3, i.e. oneof theeigenvaluesforA is zero.
We can always assumethat A1 = 0. Then K12 = K13 = K14 = 0 by the Gauss
equationand(18) reducesto

— A~= K23 + K24

‘ ‘ 3~ 23 34

— A~= K24 + K34

Theseequationssatisfy (17) if

K24K34
K=23 K24 +K34

Now assumethat also A2 = 0 then K23 = K24 = 0 and(20) reducesto — A~=

= — A~= K34. Clearly ifalsoX3 = 0 or.Kic = 0 thenall K.1 = 0.

Now we considerthe Codazziequations:

(21) (V~A)Y=(V~A)X

sinceRic = — A2 this clearly implies

(22) (VXRic)Y=_(VAYA)X.

Now theconverse also holds.Assume

V~A
2y =VAYAX.

If A is of rank 4 then theCodazziequationsfollow by settingZ = AY.

Then considerthe degeneratecase,when A has two zero eigenvaluesand

assumee
1, e2 are the corresponding eigenvectors. Then any vector Z in T~M

can be written: Z = AY + z1e1 + z2e2 for some YE TM and (z1, z2) ER
2.

Thenwe have:

V~AZ=V~A(AY+z
1e1+z2e2)=VXA

2Y=VAYAX

=VAX—zV AX-~zV AX.Z 1 e, 2 e
2

So clearly the Codazziequationshold on the subspace(z1, z2) = (0, 0). We

needto show that VekAX= 0 fork = 1,2, orin coordinatesVekAeI = Aj.k = 0.

SinceR~= — A~~ R’1 = 2A.A11. Clearly A.1 = 0 for i = 1,2 sinceA1 = 0 in U

fori = 1,2. Hence R1 = 0impliesA~.1= 0.

ThecontractedBianchi identitiesare:
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R’ —R
1 —‘~R~

Q:k k;2 L..... k.Q;r

Thenby the Gaussequationswehave:

= ~R~’j
7=~A~A~~,. =A~A~+A ;2+~AiA~1=0.

The first term is zero sinceA~= A1 = 0. The second term is zero since A

hasranke2 in U. The third term is zero sinceTraceA = 0. Similarly provethat
R’.2 = 0.

Now assumeV~RicY= — ~A ~AX or in coordinates:

R~p= ~ = _~(A~A~);~since ~ A~ = 0

=~(A~A~_A~A~);r_~ (A’j~A~)•

Thenusingthe Gaussequations:

_~IRkQ~‘~k~

But this is just the contractedBianchiidentities.

The finishesthe proofof Theorem3.

Remark. As seenin the proof, the result doesnot dependon the signatureof

the metric. Thus the theoremstill holds in the caseof a Riemannianmanifold,
now with the redundantassumptionof realeigenvaluesof the Ricci transforma-

tion.

4. APPLICATION TO COSMOLOGY

We will now consider one of the most renowned cosmological solutions to

Einstein’s equation,namelythe Robertson-Walkerspacetime.By applying Theo-
rem 3 we shall showhow this spacetime can berealizedas a minimal submanifold
on E

5.

A Robertson-Walkerspacetimeis mostconvenientlydefinedin terms of warped
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products(see [14]) in the following way. Let S be a connected3-dimensional
Riemannianmanifold of constantcurvaturek = — 1, 0 or 1, andf> 0 a smooth
function on an open interval I of R. A Robertson-WalkerspacetimeM(k, f)
is a warpedproductI x ~S.

Explicitly M(k, f) is the manifold I x S with the line element ds2 = — dt2
+f2(t) do2,where do2 is the line elementon S lifted tol x S.

Remark.The choice of this spacetimeas a possiblecandidatefor a cosmological

model of the universe rests on the requirementof a spatial homogeneousand

isotropic spacetime.Astronomicalobservationsindeeedindicatethat the spatial

universe is approximately spherically symmetric about the earth, i.e. thereis
no preferreddirectionsin the universe. The universeis said to be spatiallyiso-

tropic.
Furthermoreit is assumedthat thereis no preferredposition in the universe,

i.e. physical measurementsdo not dependon where they are performed.The
universe is said to bespatiallyhomogeneous.

Mathematicallyhomogeneitymeansthat the isometry groupacts transitively
on the spaceS and isotropy that the isotropy group in eachpoint p E S acts
transitively on the unit sphereof T~S.i.e. any frame in p canbe mappedto any
other by the differential of an isometry. The isotropy group is the subgroup
of the isometry group that leavesp fixed. it is known that every isotropic Rie-

mannian manifold is homogeneousand completeand of constant curvature.

Furthermore the odd dimensional ones are either R’1, H’1, S’1 or RP’1, with n
odd.

Hence the standardchoicesfor S in a Robertson-Walkerspacetimeare R3,

S3 or H3. In coordinatest, r, 0, ~, the metric on M(k, f) then takesthe form:

[ dr2 1
(23) ds2 =—dt2 +f2(i) L 2 +r2(d02 ±sin2O dp2)J.

1—kr

Remark. The isometric imbeddingof the Robertson-WalkerspacetimeM(k, f)

into E5, with theelement

d.sE, dx
1+dx2+dx3+dx4dx5,

are found in the threecasesk = 0, 1,— 1.

1) k = 0.

The line elementon M(k, f) hasthe form
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ds2 ~dt2 +f2(t)[dr2 ±r2(d02+sin2Odp2)].

Now in the coordinatex
1 x5 on E

5 assumethe imbeddingis given by

x
1 =frsin0cos~

x2 =frsin0sinp

x3 =frcosO

x4 =g1(t, r)

x5 =~2~ r).

Where g1, g2 are functions on M(k, f) dependingonly on t, r. Then let
ag. ag.

g= ,g L wefind:

= ~ dx~ dx~

= (r
2(f’)2 + (g’)2 — (g’)2) dt2 + (rf’f+~

1g’1—g2g~)dt dr

+ (f
2(~

1)
2 ~2)) ~2 +r2f2(d02 ±sin2Odp2).

Hencethefunctionsg
1, g2 hasto satisfy

(24) r
2(f’)2 4-(g’ )2 —(g’)2 =—

(25) rf’ +g
1g’1 —•2g; =0

(26) f
2 ~(~)2 ~ =~2~

Settingo~= g
1 — g2 and 13 = g1 + g2 equation(26) implies c43 = 0. Taking

= 0 thenequations(24) and(25) taketheform:

= —(1 +

o113 = — 2rf’f

If ~ = f then 13 = — r
2f + c(t) from the secondequationand by inserting

into the first we find

c(t)=— — dt.

J f’

Henceweget theresult:
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(27) g
1 =—(a+13)= _((l_r2)f_f7dt).

(28) g2=__(~_~)=__((l+r2)f+f7dt).

2) k = 1 (resp.k = — 1).
If we setr = sin x (resp.r = sinh x) the line elementtakesform:

ds
2 =—dt2 +f2(t)[dx2 +r2(d02 +sin28d~2)].

Theimbeddingis thengivenby:

Fork=l Fork=—l

x
1 = f sinxsin 0 cos p x1 = f sinh x sin0 cos p

x2 =fsin xsin 0 sin p x2 =fsinli x sinO sin ~

x3 =fsinxcos0 x3 =fsinhxcos 0

x4 =fcos x x4 ((f’)
2— l)112dt

x
5 =f((fP)2 + 1)1/2 dt x5 =fcoshx

PROPOSITION 1. A Robertson-WalkerSpacetimeM(k, f) can be immersediso-

metrically andminimally into E
5 if

(29) h =f”f+ 3((f’)2 + k) = 0

with f” <0 everywhere.

Proof Thesectionalcurvaturesarefrom themetric (23) foundto be:

((f’)2+k)
K

12 = K13 = K14 = f”/f and K23 = K24 = K34 = 2

so the conditionsK12 = K13, K24 = K34 and K12K34 = K14K23 = K13K24 in
Theorem3 is satisfied.
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The final conditionis:

K
23 = — 21 (K12 + K34) 3K34 + K12 =f”/f+3((f’)

2 +k)/f2 =0~

h =f”f+ 3((f’)2 + k) = 0.

(ft~2 k

Hencewe find — A~= 3f”/f andby h = 0, — A~= — A~= — A~= — ‘~ ‘ +

f2
so the Ricci conditionsare satisfiedby (29) andf” <0 everywhere.Furthermore
sinceM(k, f) topologically isR4, R xS3 or R xH3 they areall simply connected

(and connected)henceby Theorem3 thereexistsa global minimal immersion,
in fact it is givenby the remarkon p. 13. •

In analogy with the standardchoiceof stress-energytensorin the Robertson-

WalkerSpacetimewe define

DEFINITION. The energy-densityfunctionp onM(k, f) is givenas:

(f’)2 +k
p=3

f2

Remark. The standard choice of stress-energytensor T in Robertson-Walker
spacetimeis that of anideal fluid:

T = (p + p)U* ® U* + pg.

where U is a timelike unit vectorfield on M(k, f) and U* is its dual and p is
the pressurefunction on M(k, f). By the Einsteinequationsthe energy density
and the pressureare thengiven as

p = 3K

34 — p = 2K12 + K34.

If M(k, f) is a minimal hypersurfacethenby proposition1

—p = 2(K12 + 3K34)— 5K34 =— 5/3 K34 so

5 p = 3p.

Friedmannconsideredthecasep = 0 in thestress-energytensor.

The earliesteraof the universeand the final one, if it exists,aredominatedby

radiation. There the Friedmannmodel givesway to radiation models, for which
massis zeroand p= 3p.

For what concernssolutions to Proposition 1, h = 0 we have the following
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result.

PROPOSITION 2. On a Robertson-WalkerspacetimeM(k, f) with f nonconstant,

the following areequivalent.

(1) M(k, f) is a minimal hypersurface.
(2) pf8 = ma positive constant.
(3) (f’)2 + /c = A/f6, whereA = m/3>0.

Proof The equivalenceof (2) and (3) is immediatefrom the definition of p.

= 3((f’)2 ±k)f6 (f’)2 ±k = (m/3)/f6 = A/f6.

3((f’)2 + k) m

If(l)holdsthenh=f”f+3((f’)+k)=Osof”=— f
Hencem is positive since by (1) f” <0. Now to show m is constant consider:

(mf6)’ = m’f6 — 6mf7f’

= 6f’f” = — 6mf7f’ ~ m’ = 0.

Conversely if (2) holdsthen

0 = m’ = (pf8) = (3((f’)2 + k)f6)’ =

= 6f’f”f6 + 6 ‘ 3((f’)2 + k)f5f’ ~ hf’ = 0.

Thenonconstancyoff isneededto proveh = 0.
Assume h is not identical zero. Then there is a maximal interval J C I on

which h is never zero; hence f’ = 0 on J so f is constant on J. ThusJ*I. Since

h = f”f + 3((f’)2 ±k)) it is a nonzero constant on .1. Thus h is nonzero on

an interval strictly larger than J since h is differentiable,hencewe arrived at a

contradiction.

The condition f” <0 is implied by m> 0. U

Remark. We find the scale function f in the three cases k = 0, 1, — 1, setting

the initial singularity at t = 0.

(1) k = 0. The equationis f6(f’)2 = A which is easily solved to f = C t”4,

c8
with — =A.

4
Thus theinitial expansioncontinuesforeverwith f—” = and f’ -+ 0.

(2) k = 1. The equationis then (f’)2 + I = A/f6 setting

f = A1/6 sin1’3 ~(t)
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we then find

A
116 (

t=— sin~i~ci~ 0<ii<2ir.

The expansion has a maximum f = A 1/6 anda final collapse.

(3) k = —1. Setting

f = A 1/6 sinh113 r?(t) we find

A~6(
sinh~3~d7?.

Thus the universeexpandsforeverwith f—i’ andf’ —~ I.

The graph off is shown in the threecasesin Figure 1.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

Figure 1

Remark. If we consider the 4-dimensionalRiemanniananalogto the Robertson-

WalkerspacetimeM(k, f), i.e. the manifold R x Swith metric

[ dr2
= dt2 +f2(t) I + r2{d02 + sin2O d~2}

[I — icr2

Theorem3 is still valid as noticed previously and equation(29) in Proposition

I then takesthe form

h =f”f+ 3((f’)2 —ic) = 0,
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with f” > 0. Thusequation(3) in Proposition2 now becomes

(f’)2 — k = A/f6,

but here A is a negative constantsincef” >0, hencethe casesk = 0 and k = —

hasno solutions.In the casek= 1 the solution is givenby

a~6I
f= a”6 cosh1’3 i~(t) t = —) cosh1’~~ th~,

with — A replaced by a; a positive constant.The solution is shown in Figure 2

and it generalizes the classical Catenoid in E3 as the only minimal hypersurface

of revolution in E5 (for a general proof of this see [121).

Figure2

Remark.Astronomicaldata. According to Hubble (1929), all distant galaxies

are moving away from us at a rate proportional to their distance. For galaxies

and the distance between ~~(t) and 7q(t) in S(t) is .11t) d(p, q), where

d is Riernariniandistance in the space.Hubble’s discovery is by current esti-

mates:

f’(t
0) I

H= = (>0).
~ f(t0) 18 ±2 . lO

9yr

With this assumptionwe can calculate the age of the universe— at least in
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thecasek = 0 this is simple. k = 0 — f = ct
11~hencethe Hubble function II =

=f’/fis l/4t, hencetheage of theuniverse is

t
0 = = 4,5 i0~ yr.

4H0
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